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The magnetohydrodynamic flow past a non-conducting 
flat plate in the presence of a transverse magnetic field 

By D. M. DIX 
Department of Mechanical Engineering, Massachusetts Institute of Technology, 

Cambridge, Massachusetts? 

(Received 20 April 1962 and in revised form 8 October 1962) 

The general character of the magnetohydrodynamic flow past a non-conducting 
flat plate in the presence of transverse magnetic fields is analysed in some detail. 
The appropriate extension of the Rayleigh problem to the magnetohydrodynamic 
case is shown to yield solutions which correctly predict some features of the 
steady flow past a semi-infinite flat plate; in addition, it is shown that the 
knowledge of these significant features permits an easy evaluation of their 
magnitudes in other extensions of the Rayleigh problem. The flow past a semi- 
infinite flat plate is analysed by two methods. First, by linearizing the governing 
equations and incorporating the assumption of a low ratio of viscous to magnetic 
diffusivity, the results for skin friction and the normal component of magnetic 
field at  the plate are obtained, and are shown to be useful in interpreting the 
character of these low conductivity flows. Secondly, the complete set of governing 
equations is formulated as a finite difference problem and solved numerically 
on a digital computer. The results obtained, in addition to demonstrating feasi- 
bility of the numerical calculations, show that the disturbance produced by 
the plate is no longer confined to a thin viscous layer if the ratio of viscous to 
magnetic diffusivity is greater than 20-2, but that an appreciable Alfvhn type 
disturbance is excited. 

1. Introduction 
The purpose of this communication is to present the results of a theoretical 

investigation of the problem stated by the title. This problem, as study of the 
pure fluid mechanics analogue has shown, is of fundamental importance to the 
flow about obstacles and at system boundaries. The paper is divided into four 
parts. In  $2,  various extensions of the Rayleigh problem are discussed, the 
emphasis being placed upon the significant physical aspects of the flow and their 
relationship to the steady flow past a semi-infinite flat plate. In  $ 3, the latber 
problem is formulated, linearized, and solved in an approximate manner for the 
skin friction and the normal component of magnetic field at  the plate under the 
assumption that the ratio of viscous to magnetic diffusivities is small. In  $4, 
the complete set of governing equations of the semi-infinite plate problem is 
formulated as a finite-difference problem and solved numerically on a digital 
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computer. In 9 5, the results obtained are compared with the previous analytical 
results, and the qualitative character of the flow is emphasized. 

The basic assumptions employed throughout are the usual magnetohydro- 
dynamic ones; the fluid velocity is assumed small compared with the velocity of 
light and hence displacement currents are neglected; the fluid is assumed to be 
an incompressible, macroscopically neutral continuum with constant transport 
properties, and the conventional form of Ohm’s Law is employed. 

The following notation, unless otherwise defined, is employed: 

A 

U 

B 
D 

E 

h 

J 
1 

f 

magnetic vector potential, 

Alfvbn velocity, a = B/J(,aop) 
magnetic intensity 
larger of the two diffusivities, v 

or l/p0 CT 
electric field 
skin friction 
distance from plate to transverse 

boundary 
current density 
distance from leading edge to 

V x ( k A ) = B  

downstream boundary 

The subscripts employed are: 

a refers either to position of 
Alfvbn wave or conditions 
immediately behind i t  

g refers to characteristic growth 
length 

H refers to Hartmann layer 

Cartesian components of 

dimensionless AlfvAn velocity, 

viscous layer thickness 
ratio of diffusivities 
vorticity, IV x VI 
permeability of free space 
kinematic viscosity 
density 
electrical conductivity 
stream function; V x (kY) = V 

velocity V 

a = a/U 

refers to separation distance 
0, co refer to ambient conditions 
1,2 refer to conditions upstream 

and downstream of Alfvbn 
line, respectively. 

Field quantities, with asterisks, are dimensional ; otherwise they are non- 
dimensional. 

2. The Rayleigh problem 
2.1. Introductory remarks 

In  the fluid mechanics sense, the classical Rayleigh problem is that in which 
a thin, infinite plate is started impulsively from rest in its own plane in an un- 
bounded viscous medium. The usefulness of such a problem is that it exhibits 
qualitative boundary-layer characteristics and in this respect yields insight into 
the behaviour of the steady, two-dimensional flow past a semi-infinite flat plate. 
With the introduction of electromagnetic effects, considerable Iatitude exists in 
the choice of electromagnetic properties of the plate, orientation of the applied 
magnetic field, form of electromagnetic boundary conditions, and excitation 
methods, resulting in many possible magnetohydrodynamic extensions. As it 
happens, the governing equations of the various extensions of fundamental 
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interest in the incompressible problem retain the linearity of the classical 
problem. 

Some extensions of the problem have been considered by previous investj- 
gators. Rossow (1960) and Dix & Cooper (1960) attacked the problem of a non- 
conducting plate started impulsively from rest with velocity U$ with an applied 
magnetic field B$ perpendicular to the plate (see figure la), and Carrier & 

J I 

( b )  

FIGURE 1. (a )  Plane Rayleigh problem; ( b )  annular Rayleigh problem. 

Greenspan (1960) the corresponding annular problem (see figure 1 b). Chang 
& Yen (1959) and Ludford (1959) considered the problem of the infinitely con- 
ducting plate. It is the purpose of the following discussion to indicate how the 
significant features of any of the above flows, together with others which have 
not yet appeared in the literature,t may be obtained without recourse to elaborate 
analysis. 

2.2.  The ultimate state 

The significant features of the flow, as obtained by previous investigators, are 
the formation of a viscous layer adjacent to the plate and the generation of an 
Alfvh wave which propagates into the fluid at  its characteristic speed, a, and 

t More recent work by Bryson & RoSciszewski (1962), which appeared after the com- 
pletion of the present work, treats vmious extensions of the Rayleigh problem quite 
thoroughly; however, it is felt that the simple physical arguments presented here are 
still of value in emphasizing the basic character of the flow. 

29-2 
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diffuses. At some time after the start of the motion, the wave is clear of the 
viscous layer, the latter is fully developed, and the flow behind the wave is quasi- 
steady. The qualitative character of this flow is shown in figure 2. The relative 
strengths of the wave and viscous layer are determined by the ratio (8) of the 
two diffusivities, v and l/,uoc, which is the only parameter of the problem. This 
flow will be referred to as the ultimate state, and it is of interest to determine the 
time required for it to develop and the velocity and magnetic field changes across 
the viscous layer and the Alfvh wave. 

Y =  

Y =  

FIGURE 2. Qualitative Rayleigh profiles for t $ 1. 

To fix ideas, the problem considered is that in which the initial state is station- 
ary and free of currents (other initial states may be treated easily by super- 
position), and there is fluid on both sides of the plate; the plate, however, may 
be either non-conducting or it may be a conducting plate which is insulated 
from the fluid, or it may be an uninsulated conducting plate. The net result of 
these considerations is that the initiating mechanism may either be a motion 
imparted to the plate, a longitudinal component of magnetic field applied at  
the surface of the plate, or both. 

The time duration necessary for the ultimate state to be established can be 
derived by observing that this time must be greater than the time for the viscous 
layer to develop and such that the distance the wave has travelled is greater than 
both the width of the wave and the width of the viscous layer. In  the fully 
developed viscous layer, the magnetic forces are equal and opposite to the 
viscous forces, and the inertial forces vanish. The time required for the develop- 
ment of this layer is therefore that required for the magnetic forces to become 
greater than the inertial forces, i.e. t,* - p/cBZ2. The thickness of the fully 
developed layer is determined by the fact that the magnetic and viscous forces 
are equal, i.e. 8% N (pv/aBZ2)*. The width of the Alfvkn wave is given by (Dt*)t, 
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where D is the greater of the two diffusivities, v or l/poa. Therefore, the time a t  
which the wave is as broad as the distance travelled is t$ N D/a2, and the time 
at  which the wave has travelled a distance equal to the thickness of the viscous 
layer is t* - dpplcBg2. These conditions reduce to the single requirement that 
t* 9 Dpop/Bg2 for the ultimate state to be achieved. It is pointed out that in 
this sense the ultimate state is never achieved if either c + 0 or Bg + 0. This is 
the principal difference between the ordinary Rayleigh problem and the various 
magnetohydrodynamic extensions. 

The relations governing the relative strengths of the viscous layer and Alfvhn 
wave are simply the statements that the change in the (longitudinal) com- 
ponent of magnetic field across the Hartmann layer is related to the velocity 
change by (using the notation of figure 2), 

BZ -.I?; = - po( v~v): ( Ug - U z )  (2.1) 

and that the similar relation for the Alfvhn wave is 

Introducing the dimensionless variables B, = B,*/Bg, U, = U,*la*, the solution 
of (2.1) and (2.2) for B, and U, is 

From Ohm’s Law it can further be deduced that 

E, = - U, = B,. (2.4) 

It is mentioned here that the existence of E,  in a quasi-steady, current-free flow 
is not at all artificial as supposed by Carrier & Greenspan (1960), as it arises due 
to the induction effect of the Alfv6n wave (!(dBJdt) dy =I= 0) and of course would 
cause charge to accumulate at  the extremes of a plane problem. It is further 
pointed out that providing for closed current paths, as is necessary in all magneto- 
hydrodynamic problems, poses no dificulty in the present case, as the current 
induced in the viscous layer and/or the plate is exactly equal and opposite to 
the current in the Alfvhn wave. 

The effects of the various initiating mechanisms are portrayed by equations 
(2.3) and (2.4). If the plate is non-conducting, and given an initial velocity, then 

which is in accord with the results of previous investigators (Carrier & Greenspan 
1960; Dix & Cooper 1960). If now the plate is an insulated conductor and 
remains stationary while an initial current is passed through the plate, then 
U, = 0 and 

It is pointed out in passing that if one desires to generate Alfv6n waves, then the 
latter excitation form is obviously the optimum method, since in general e will 
he quite small. 
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If B, = - Up, it is seen that no Hartmann layer develops. This is in fact the 
case if the plate is infinitely conducting and uninsulated (as considered by Chang 
& Yen 1959 and Ludford 1959), since E, = -Up.? Also this is presumably 
the case some authors loosely refer to as the ' field-fixed-with-respect-to-plate ' 
case, since E* = - U;B$. 

If Bp = ,/e Up, then no Alfvh wave is present; this situation can arise onIy with 
the use of an insulated conducting plate, with the conducting portion remaining 
stationary. 

These considerations may be extended to various asymmetrical cases. For 
example, for fluid on one side only of an infinitely conducting plate, or an 
infinitely conducting pole piece, the result is the same as for the symmetrical 
case. For fluid on one side of an infinitely permeable magnet, the result is the 
same as for the non-conducting plate since Bp = 0. There are obviously many 
more extensions and modifications of this type problem, but it would be tedious 
and not very informative to explore them, as the essential features are no 
different from those previously discussed. 

2.3. Relationship to the semi-inJinite plate problem 

Henceforth, the problem considered is the two-dimensional, steady flow past 
a non-conducting semi-infinite flat plate in the presence of an applied magnetic 
field transverse to the plate, with an applied electric field such that the current 
far upstream is zero (see figure 3). As mentioned previously, the corresponding 
Rayleigh problem, which in this case is that whose ultimate state is given by 
(2.5),  may yield insight into this problem. 

The analogy between the Rayleigh problem and the steady problem is made 
by simplyreplacing t* in the former problem by x*/Uz. The qualitative character 
of the resulting flow is shown in figure 4. Order of magnitude considerations 
analogous to those applied in the Rayleigh problem yield the characteristic 
distances shown in the figure: (i) the characteristic growth length of the viscous 
layer (determined by equilibrium of inertial and magnetic forces), 

xQ* - pU: l~Bz ' ;  

(ii) the distance required for separation of the viscous layer and the Alfv6n wave 

x,* N , u ~ ~ U ~ D I B ~ ~ ;  

(iii) the fully developed thickness of the viscous layer, 

8% N ( ~ v / v ) *  BE; 

(iv) the nominal position of the Alfvkn 'line', 

y$, - ax*; 
(v) the thickness of the Alfvkn line, 

Ay,* N (Dx*/U$)*. 

t For uninsulated Conducting plates, an additional restriction must be placed on the time 
required for the ultimate state to be achieved; it must be shorter than the magnetic 
diffusion time across the plate. 
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It is evident that this analogy is not well made if, in the steady problem, the 
fluid acquires a large normal velocity component or the normal component of 
magnetic field differs appreciably from the upstream value. The contributing 
magnetohydrodynamic factors are the current in the viscous layer, which tends 
to increase the normal component of magnetic field in the vicinity of the leading 

I Velocity 

FIGURE 3. Steady two-dimensional flow past a flat plate. 

profile at x - xo 

FIGURE 4. Qualitative picture of flow past a semi-infinite flat plate as 
constructed from the corresponding Rayleigh problem. 
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edge, and the oppositely directed current in the Alfvkn 'line', which causes the 
fluid to be deflected toward the plate. It is easily shown that these effects are 
governed by the parameters Js and a Js; and that if either of these is not small 
compared to unity, the effects are not necessarily small. In  this case, the analogy 
to the Rayleigh problem is not well taken and the flow pattern shown in figure 4 
requires modification. The necessary modifications will be discussed in detail 
in 0 5; nevertheless, it  is evident at this point that the nature of such flows is such 
that in addition to a viscous layer adjacent to the plate, the flow is disturbed 
in an appreciable region away from the plate. An important physical result of 
the work presented here is an analysis of this effect, as it represents a significant 
departure from the character of the flow in the absence of a magnetic field. 

It is noted that when Je and a Js are small, which is a case of great practical 
interest, the analogy with the Rayleigh problem is quite well taken. Thus a 
viscous layer, which approaches the Hartmann layer asymptotically with the 
characteristic growth length x;, is expected. 

3. The linearized semi-infinite flat -plate problem 
3.1. Formulation of the general problem 

The more interesting problem of steady flow past a semi-infinite flat plate as 
shown in figure 3 is governed by the Navier-Stokes equations with the Lorentz 
force included and Maxwell's equations. These equations, appropriate to two 
dimensions, can be obtained in a convenient form by rendering them dimension- 
less (employing v/Um, Urn, and B,  as the characteristic length, velocity, and field 
strength, respectively) and introducing the stream function and magnetic vector 
potential. The governing equations then become: 

V4Y +YXV2Yu-'FuV2Yx = a2(A,V2A,-A,V2A,), (3.1) 

V'A = -e(YZA,-Yfr,AX- 1). (3.2) 

The boundary conditions are \r = Y, = A, = 0 at y = 0, x > 0; Y, --f 0, 
A,  --f - 1,  A, + 0 ,  Y, + - 1 as z + - 00, and further that Y and A are reasonably 
well behaved as y --f k co and as x -+ + co. This is the complete mathematical 
formulation of the problem; as the equations are non-linear they offer no practical 
hope of analytical solution. 

3.2. T h e  linearized problem 

It has been found both in the pure fluid mechanics case and in some magneto- 
hydrodynamic problems (Greenspan & Carrier 1959) that linearization of the 
governing equations allows qualitatively useful results to be obtained. Following 
the usual procedure for linearization, the perturbation potentials YP' and A' 
are defined by 

(3.3) ir = y + ~ ' ,  

A = A'-X,  (3.4) 

and are assumed negligible in the second order. On a physical basis, the assump- 
tion that Y' is small is obviously not valid near the plate; similarly, the assump- 
tion that A' is small can only be justified for small B .  However, these deficiencies 
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are certainly no greater than in the pure fluid mechanics case so that quali- 
tatively useful results may be expected. 

Making the substitutions (3.3) and (3.4) into (3.1) and (3.2) and neglecting 
terms of second order in the primed quantities yields 

V4Y' - V2Y; = a2V2Aj, (3.5) 

V2A' = e(A&-Y;). ( 3 4  

The corresponding boundary conditions are Y' = Ah = 0, Yb = - 1 a t  y = 0, 
x > 0;  Y!; = Aj: = A' II = Y; --f 0 as x -+ - co, and reasonable behaviour of Y' 
and A' as y --f & 00 and as x --f + co. Unfortunately, because of the mutual coup- 
ling of the equations, the analysis of this problem is exceedingly complex. It is 
therefore convenient to introduce the further assumption that the rate of change 
in the normal component of magnetic field (B,) in the y direction is much less 
than the rate of change of the longitudinal component of velocity (a) in the 
y-direction (Az,  < Y,,). It can readily be shown that near the plate, where the 
right side of (3.6) is largest in magnitude, this is a valid assumption for e not large. 
In  the region away from the plate, the assumption cannot be justified, but for 
small e, the contribution of both terms is small. Introducing this assumption 
into (3.5) and (3.6) and rearranging, the governing equations become 

v 4 ~  - V~Y; = ea2'-r;,, (3.7) 

V2A' = €(A;-'€";). (3.8) 

It is evident that the preceding equations constitute a relatively simple set, as 
the stream function is now uncoupled. The significance of the parameters E and 
€a2 as determining, respectively, the magnitude of the induced magnetic field 
caused by the flow and the effect of the applied magnetic field on the flow, is 
clearly shown. 

The solution of the set of equations (3.7) and (3.8) with the associated boundary 
conditions is still not trivial. Briefly, the procedure consists of applying Fourier 
transforms in x and y to the equations and boundary conditions, treating the 
skin friction at the plate (Ypl,(y + O + ) )  as unknown; obtaining the inverse 
transform in y ;  determining Y&,(y + 0 + ) in an approximate manner, utilizing 
the Weiner-Hopf technique; and, finally, obtaining the inverse transforms in x 
for the normal component of magnetic field at  the plate. The entire procedure is 
similar to that of Greenspan & Carrier (1959) and hence need not be presented 
here. The only point which merits mention here is the approximation employed 
in determining Y&,(y + 0 + ). Following the first two steps mentioned above, and 
applying the boundary conditions at the plate yields an equation of the con- 
ventional Weiner-Hopf form, in which appears a function 

where 

and p is the Fourier-transform variable in x. 

N :  = p 2  + iip + &a2 5 &[(4ea2 - l )p2  + 2ea2ip + e2a4]4, 
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To obtain a solution it is necessary to decompose this function into a product 
of two functions, one being analytic in the upper half plane and one being 
analytic in the lower half plane. In  order to obtain relatively simple results it is 
necessary to approximate the function E ( p ) .  To this end, if €a2 < 1, Nl and N2 
in (3.9) can be approximated by 

NI = p 2  + ip + ea2, 

N 2 2  2 
2 - P ,  

so that K becomes g ( p )  A { ] p i  + Ip2+ip+ea21B}-1. (3.10) 

The basic approximation technique is now t o  replace K ( x )  by another function 
D(z)  which is easily factored, but retains the essential features of the flow. 
Carrier (1959) has demonstrated that by requiring D to possess the same sin- 
gularity and the same area and first moment as K ,  a very good approximation is 
obtained. If the contribution of €a2 to the first moment of K is neglected then the 
transform of the appropriate approximate function is 

which can be decomposed by inspection. The solution then proceeds as mentl'oned 
previously. 

Following the procedure outlined in the previous section results in solutions for 
the skin friction and normal component of magnetic field at  the plate that are 
given by 

1 
Yj,(y = o + , x > 0) = ~ e-Ea'z + (ea2)h erf (sa2z)t, (3.12) 

3.3. Discussion of results of linearized problem 

(4* 

(3.13) 

The assumptions made during the course of the solution restrict the validity of 
these results to those cases where e 4 1, ea2 < 1, x % 1. The relation (3.13) is 
plotted in figure 5. 

The physical basis of (3.12) is easily deduced. The first term is merely the 
classical result of the pure fluid mechanics case multiplied by a decay factor; the 
second term is the skin friction attributed to a fully developed Hartmann layer 
(i.e. the inertial forces vanish) multiplied by a growth factor. It is worth men- 
tioning that this relation may be obtained directly from the results of the corre- 
sponding Rayleigh problem for e < 1 if t* is replaced by x * / U z ;  hence the 
characteristic growth of the boundary layer xg = l/ea2 is exactly that obtained 
from the previous analogy (§ 2.3). 

From figure 5, it is seen that the maximum perturbation in the normal com- 
ponent of magnetic field at the plate occurs at the leading edge, and is of the 
order €3. This result is physically reasonable as more distortion is expected at  
higher conductivities (higher 8) .  Also, as a is increased, the fully developed layer 



Magnetohydrodynamic flow past a $at plate 459 

is thinner, and is arrived at in a shorter distance; this indicates a smaller dis- 
turbance to the flow and hence it is expected that the magnetic field distortion 
is decreased, which is indeed apparent in figure 5. 

It was previously pointed out that, for the case of small 6, the greatest de- 
ficiency in the linearization process was the replacement of u by 1 -up, with u' 
assumed small. From equations (3.1) and (3.2)) it is seen that the major effect 
of this linearization is in the inertial terms of equation (3.1), just as in the fluid 
mechanics case. If these inertial terms are written in terms of the vorticity, i.e. 
U ~ ~ + V & , ,  it  is easily seen that the average values of u and u selected in the 

0.9 

a2 

- 

FIGURE 5. Linearized solution for normal component of magnetic field at plate. 

0.2 

0.1 

0 

linearization process govern the distribution of vorticity. It is obvious that the 
value u = 1 is a gross overestimate; in the fluid mechanics case, it  has been found 
that selecting average values of u = 0.335, v = 0 distributes the vorticity in 
such a manner that the skin friction at the plate is identical to that obtained from 
the classical Blasius solution. It can therefore be expected that some improve- 
ment of the results obtained in the present case can be made by a more judicious 
selection of this average value. For the present we shall denote this value by K ;  
the results analogous to (3.12) and (3.13) are then 

Ycw(y = O +  , x > 0) = (7rx/K)-&e-Ea2x'E+ (sa2)*erf (sazx/K)*, (3.14) 

- 

- 

I 

Use of these results will be made in 5 5. 
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4. Numerical solution of the complete problem 
4.1. Formulation of the differential problem 

The results of $8 2 and 3 yield a great deal of insight into the semi-infinite plate 
problem for small s; to obtain more quantitative information for this case, and 
to treat the case of s not small, the considerably more elaborate technique of 
numerically solving the complete set of equations as given by (3.1) and (3.2) is 
employed. This requires the complex and tedious procedure of formulating a 
finite difference problem and developing and programming a solution technique 
suitable for digital computation. Only the salient features of this process will be 
discussed here. It must be pointed out, however, that the purpose of this 
numerical work is more to determine the character of the flow rather than to 
obtain a high degree of numerical accuracy. 

Equations (3.1) and (3.2) and the associated boundary conditions can be 
properly formulated as a boundary-value problem. To circumvent difficulties 
associated with non-linear algebraic equations, the vorticity, y, is introduced 
into (3.1) and (3.2) as an auxiliary variable, and the result rearranged slightly 
t o  yield: 

vy -  (‘r,g -YJ,) = say - A J Y ~ A ,  - Y, A,), +A,(Y~A, -Y,A,),], (4.1) 

V2Y = - 6, (4-2) 

V2A = -€(Y,A,-YlJAz- 1).  (4.3) 

In order to incorporate boundaries located at finite positions, the model selected 
here can be visualized as the flow past a flat plate which is a member of an infinite 
two-dimensional cascade (figure 6). The boundaries parallel to the free-stream 
flow are then selected as the two lines of symmetry; one along the plate and one 
along the centre line of a channel. The corresponding boundary conditions 
become Y = h ,  c = A , = O  at y = h ;  Y = [ = A A , = O  at y = O ,  x , < x < O ;  
Y, = Y = A, = 0, < = -YV, at y = 0,O < x < 1. The conditions a t  the upstream 
boundary are assumed to be that of uniform flow; i.e. Y = y, 5 = A = 0 a t  
x = xu. The conditions of the fluid quantities at  the downstream boundary are 
taken to be those of fully developed Hartmann flow of half-channel width h; 
i.e. Y = Y H ;  6 = lH at x = 1 ;  the condition on the magnetic vector potential is 
taken as A ,  = 0. In  a physical sense, these latter boundary conditions require 
fluid sources and sinks and electrical currents in the region outside the imposed 
boundaries. The contributions of these sources and sinks are small by virtue of 
the boundary conditions selected; evaluations of their contributions can be 
made by systematically repositioning the boundaries and will be discussed 
subsequently. It is further mentioned that weaker conditions (for example, 
conditions on various derivatives) have been attempted, but the difficulty in 
obtaining convergence of the numerical technique employed prohibited their 
use. 

The following two sections are devoted to a discussion of the more interesting 
details of formulating and solving the finite difference problem; these may be 
omitted with no loss in continuity. 
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4.2. The finite difference problem 

The finite difference net employed here is a variably spaced rectangular net, 
chosen so that the net spacing may be made small near the plate where fluid 
quantities vary rapidly. The finite difference equations are obtained from (4. l), 
(4.2), and (4.3) by replacing the derivatives by appropriate finite difference 
approximations. These approximations are obtained by expanding the function 
at a point in a Taylor's series; e.g. 

In the present case only the first three terms of the series are retained; writing 
a similar expression for 'Fi-l,j yields a set of equations which may be solved for 

I ! I 

FIGURE 6. Tu o-dimensional cascade of plates showing domain of consideration. 

( ~ Y ' / ~ Z J ) , , ~  and (a2Y/i3y2)i,i. A similar procedure may be apfilied for the x-deri- 
vatives, while the cross-derivative is obtained from the substitution 

a 2 Y / a x  ay = a / a x [ a ~ / a y l .  

It may be shown that the truncation error in the approximations so obtained is 
of order h in the even derivatives and of the order h2 in the odd derivatives. 

The following procedure, consistent with second-order equations, regarding 
the boundary points at  which the finite difference equations may be written, is 
employed. If a function is prescribed at a boundary, then the finite difference 
equation is not written at  thasw-fsoundary points; if, however, a normal deri- 
vative is prescribed, then the finite difference equation is written at  those boun- 
dary points. The latter process introduces fictitious points exterior to the boun- 
dary; the values of the relevant functions at these points are found from writing 
the finite difference boundary conditions. Finally, the values at  the fictitious 
points are eliminated with these relations, resulting in a simultaneous set of 
equations for each of the functions Y ,  c, A which involve only values at  points 
located at  or within the physical boundaries. 

The leading edge of the plate constitutes a minor difficulty, as the vorticity is 
singular there. However, numerical results obtained by successively reducing 
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the net spacing have shown that the error encountered due to this singularity can 
be confined to an arbitrarily small region surrounding the leading edge, and hence 
is of no practical consequence. 

4.3. Solution technique 

A direct simultaneous solution of the finite difference equations for 'F, c and A 
is not feasible. The general method employed here is one of multiple iteration, 
in which the equations for Y, 5, and A are solved separately, assuming that the 
other two dependent variables are known: thus it involves only linear algebraic 
equations. The specific procedure consists of the following seven steps: 

(1) Estimate the unknown values of 6 and A at the net points. 
(2) Solve the stream-function equations (4.2), using current values of cand A .  
(3) Calculate the vorticity at  the plate from a weighted sum of the current 

value and that computed from the Y values obtained in (2). 
(4) Solve the vorticity equations (4.1), using current 'F and A values and the 

values of 5 at the plate calculated in (3). 
(5) Repeat steps (2)-(4) until satisfactory agreement is obtained between 

two successive sets of values of 5. 
(6) Solve the magnetic potential equations (4.3) using current values of 5 

and Y. 
(7)  Repeat steps (2)-( 6) until satisfactory agreement between two successive 

sets of values of A is obtained. 
The direct, simultaneous solution of the separate sets of equations for Y, 5 

and A ,  required in steps (2), (4) and (6) again is not feasible, and hence another 
iterative scheme is employed. This process, which is essentially a block relaxa- 
tion technique, is described as follows. Beginning at  the row of net points 
nearest the plate a t  which the values of the relevant function are unknown, the 
set of equations formed by the finite difference equations of every relevant point 
in the row is solved simultaneously for the values of the variable at the points 
in the row, holding constant the values at points not in the row. These values 
then replace the original values and the process is repeated for every row in the 
net, moving from the plate outward, to complete one iteration. This iteration 
process is repeated until satisfactory agreement between two successive sets of 
values of the dependent variable is obtained. It is worth mentioning that the 
more usual procedures of iteratidn by single or total steps fail to converge in the 
present case, due to the fact that, for practical values of net spacing in the region 
away from the plate, the matrix resulting from the application of the finite 
difference form of (4.1) is not positive definite. 

The above procedure was programmed for, and solution carried out on the 
IBM 709; the following details of the numerical solution procedure merit addi- 
tional mention. First, in all cases reported here, the initial estimates of A were 
those corresponding to a uniform magnetic field; thus the completion of step (5) 
in the solution procedure yields the solution for no magnetic field distortion 
(which will henceforth be referred to as Hartmann flow). Secondly, the weighting 
factor introduced into step (3) of the solution is necessary due to the fact that as 
the magnitude of the stream function is very small near the plate, the values are 
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very sensitive to the current value of 5. Numerical computations have shown 
that the weighting factor must be such that less than 20 yo of the value computed 
from the new1?" values is used. Thirdly, the net spacing employed is of the general 
form of Ax, = ae--bn where a and b are determined experimentally. Exceptions 
to this form occur in the x spacing very near to and very far from the leading 
edge of the plate, where equal spacing is employed in both regions. Fourthly, 
the solution tends to oscillate due to truncation error; hence if any single net 
spacing is very large, a large oscillation is introduced into the solution. With 
suitable caution in the selection of net spacing, this oscillatory character may be 
suppressed; in the cases reported here, the maximum oscillation in vorticity is 
1 % or less of the fully developed Hartmann flow value. Fifthly, the criterion 
employed for obtaining convergence is based on a maximum allowable percentage 
change between two successive sets of values; e.g. if 

I y(n+l )  - YpCn) I 
y ( n )  < T ,  

then convergence is assumed satisfactory. In the case of vorticity, this criterion 
is modified to 

where K is a number much smaller than the peak value of vorticity; this avoids 
requiring excessive accuracy a t  points where the magnitude of the vorticity is 
so small as to be negligible. The tolerances employed in all cases is 0.005 for 6 and 
0.003 for Y. It was found by decreasing these tolerances that the only quantities 
which changed by a percentage equivalent to that indicated by the tolerances 
were the vorticity and stream-function values at the plate near the downstream 
boundary. In  other regions, changes in significant results were confined to the 
fourth or fifth significant figure. The convergence tolerances employed for A 
are governed by the same criteria and ranged from 3 x to 4 x lo-', the 
small values being necessitated by small changes in A .  

4.4. Results 

All cases investigated here had as their origin one of two basic Hartmann (no 
magnetic field distortion) flows. The values of the parameter €a2, which com- 
pletely characterizes this type of flow, are loe2 and loU3. These values result in 
Hartmann layer thicknesses (8, = (€a2)-*) of 10 and 31.6, respectively, and 
characteristic growth lengths (xg = l/ea2) of lo2 and lo3, respectively. The 
boundary placement arrangements corresponding to these basic flows are shown 
in figure 7. These arrangements will be referred to as numbers 1, 2, 3 and 4, 
corresponding to those for ea2 = ex2 = €a2 = with the transverse 
boundary placed further from the plate, and €a2 = with the downstream 
boundary placed closer to the leading edge, respectively. The significant features 
of these arrangements are characterized by two length ratios, which indicate the 
magnitude of channelling effects and the relative importance of the downstream 
boundary position, respectively; the ratio of the Hartmann thickness, S,, to 
the half-channel width, h, and the ratio of the distance from the leading edge to 
the downstream boundary, I, to the characteristic growth length of the Hartmann 
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r------------ 1 
I I 
I I 
t-0 I 
I I 

I 

348.1 

594.5 

FIGCJRE 7 .  Boundary placement arrangements for €a2 = (top) and 
ca2 = (bottom). Distances shown are based on Reynolds number. 

Arrangement 8 H / h  1/x, 
1 N 0.1 0.65 
2 - 0.1 3.0 
3 N 0.05 0.65 
4 - 0.1 1.90 

layer, xg. The values of these ratios for the four arrangements are also summarized 
in figure 7. 

Each case for which results are presented here will be referred to by the 
notation case N-M, where N will refer to the boundary placement arrangement 
and M will refer, in general, to increasing values of e. Numerical results were 
obtained, and some form of results are presented for the ten cases listed in the 
following table: 

Case 

1-1 
1-2 
1-3 
1-4 
2-1 
2-2 
3-1 
3-2 
4- 1 
4-2 

€cL2 

10-3 
10-3 

10-3 
10-3 

10-3 
10-3 

10-2 
10-2 

10-2 
10-2 

6 

0 
10-3 
10-2 
10-1 
0 

10-1 
0 

10-1 
0 

10-1 

Remarks 

Hartrntcnii type flow 
.- 

- 
Hartmann type flow 

Transverse boundary effect, Hartmann type flow 
Transverse boundary effect 
Downstream boundary effect, Hartmann type flow 
Downstream boundary effect 

- 

The results for the various cases are presented in selected graphical and tabular 
form and are discussed in the following section. 



Magnetohydrodynamic $ow past a $at plate 465 

5. Discussion of results 
5.1. Hartmann flow 

In order to compare the skin friction obtained for the Hartmann type flows 
(cases 1-1, 2-1, 3-1 and P 1 )  with that obtained from the linearized solution of 
Q 3, it is necessary to evaluate the effects of the finite position of the transverse 
and downstream boundaries on the numerical results. The effect of the trans- 
verse boundary on the numerical results was approximately eliminated by dividing 
the actual skin friction obtained at  a given x-co-ordinate by the dimensionless 

10 

- Linearized Hartmann flow 
Case 2-1, K = 0-70 

Case 1-1, K = 0.46 

Case 3-1, K = 0.46 
Msffatt 1961, ca2 = K = 0.46 
Moffatt 1961, gaz = lo-*, K = 0.70 

o 
a 
0 

1 

0.01 01 1 .o 
Xn/K 

solution with that of linearized solution. 
FIGURE 8. Comparison of skin friction as obtained from numerical 

velocity at  the transverse boundary at  the same x-co-ordinate; the validity of 
this procedure is demonstrated by comparison of the results of cases 1-1 and 3-1 
in figure 8. The location of the downstream boundary has no appreciable effect 
(less than 0.5 yo) in the results of cases 2-1 and P I ,  although there is an appreci- 
able difference in the ratio l/xg (3.0 as compared to 1.9, respectively). In  cases 
1-1 and 3-1, l / x g  = 0.65 and it is expected that the downstream boundary effect 
is somewhat, but not significantly, greater than in the preceding cases. Finally, 
the selection of the average value of the longitudinal component of velocity to 
be used in the linearized solution the factor K in equation (3.4) was made on the 
basis of obtaining a reasonable correlation with the numerical results, and is 
therefore somewhat arbitrary. 

The comparison of the numerical results with the linearized solution, shown in 
figure 8, possesses two significant features. First, although the correlation 
obtained using a single value of K for any given case is relatively good, it is not 
exact, and it must be concluded that the functional form of the linearized solution 
is not exactly correct. Secondly, as the value of the interaction parameter, ea2, 
increases, the appropriate value of the factor K increases. This can be inter- 
preted on physical grounds for as the interaction parameter increases, the 
viscous layer becomes thinner and hence it is expected that the appropriate 
average velocity employed in the linearized solution would increase. 

The primary usefulness of the above results, apart from yielding insight into 
the general behaviour of the flow and the significant parameter involved, is as 

30 Fluid Mech. 15 
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a verification of other boundary layer calculations. For example, Moffatt (1961), 
employing integral methods with similar velocity profiles, obtains for the skin 
friction: 

at, = 0. 
0.8 17(€a2)4 

T.. = - 

This relation is also plotted in figure 8; it is seen that the correlation with the 
numerical results obtained becomes poorer as the parameter €a2 is increased. This 
indicates that the assumption of similar velocity profiles needs modification if 
the accuracy of the method is to be improved. 

\ Case 
X\ 

0 
1 
3 
6 

11 
19 
34 
55.1 
83.9 

123.5 
178 
253 
357 
454 
552 
650 

r--- 
1-1 

0.451 
0.373 
0.265 
0.184 
0.132 
0.0992 
0.0749 
0.0603 
0.0509 
0.0448 
0.0408 
0.0384 
0.0373 
0.0358 
0.0345 
0.0348* 

r 
0 
1 
3 
6 

11 
19 
34 
55.1 
80 

105 
131 
159 
190 
224 
261 
300 

Skin friction, ( - fJgG,, 
7 _____- 

1-2 

0.451 
0.374 
0-265 
0.185 
0-132 
0.0991 
0.0748 
0.0600 
0.0507 
0.0447 
0.0408 
0.0386 
0.0373 
0.0361 
0-0344 
0.0348* 

7-- 

2-1 

0.773 
0.466 
0.296 
0.218 
0.170 
0.140 
0.121 
0.113 
0.110 
0.109 
0.109 
0.109 
0.109 
0.109 
0.109 
0.110* 

1-3 1-4 

0.449 
0.372 
0.264 
0.184 
0.132 
0.0988 
0-0746 
0.0599 
0.0506 
0.0445 
0.0405 
0.0380 
0.0366 
0.0355 
0.0344 
0.0348* 

0.445 
0.369 
0.261 
0.182 
0-131 
0.0983 
0.0744 
0.0600 
0-0509 
0.0449 
0.0409 
0.0382 
0.0363 
0.0360 
0.0364 
0.0348* 

Skin friction, ( - E)yFO 

2-2 4-1 

0.748 
0-451 
0.288 
0.213 
0-168 
0.140 
0.122 
0.113 
0.109 
0.107 
0-107 
0.107 
0-107 
0.107 
0.108 
0-110* 

0-773 
0.466 
0.296 
0.218 
0.170 
0.140 
0.121 
0.113 
0.109 
0.109 
0.109 
0.110 
0.110* 

* Denotes prescribed boundary value. 

3- 1 3-2 

0.445 0.437 
0.368 0.362 
0.261 0.257 
0.182 0.179 
0.130 0.128 
0.973 0.961 
0.732 0.726 
0.585 0.583 
0-491 0.492 
0-430 0.433 
0.389 0.392 
0.366 0.367 
0.348 0.344 
0.339 0.248 
0.321 0.357 
0.332* 0*332* 

0-748 
0.451 
0.288 
0.213 
0.168 
0.140 
0.122 
0.113 
0.109 
0.108 
0.108 
0.110 
0.110* 

TABLE 1. Effect on skin friction of increasing parameter E.  
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5.2. Signijicant features of the numerical results for the complete $ow 

To interpret the numerical results fully, it  is necessary not only to deduce the 
basic character of the flow, but also to evaluate boundary effects. The numerical 
results are presented and the significant features of the basic flow are discussed 
in the following paragraphs. Further interpretation of these results, as well as 
a discussion of boundary effects (apart from the observation that the influence 
of the boundaries is to resist changes from the Hartmaim type flow without 
altering the basic character of the results) is presented in 0 5.3. 

0 Case 1-1 
0 Case 1-3 

A Case 1-4 

- . I  

I 

4 

FIGURE 9. Current density profiles for cases 1-1, 1-3 and 1-4; z = 83.9. 

The Alfvbn-wave character of the flow external to the viscous layer is most 
easily observed in the current density profiles shown in figures 9-11. As E is 
increased with €a2 fixed), the current density becomes more concentrated, 
resulting in the expected maxima in the profiles. The maximum magnitudes of 
this effect are shown in table 2. The correlation of the location of the maxima of 
these profiles with that of the Alfvh line originating a t  x = 0, y = a,, is shown 
in figures 12-14; as expected, the better correlations occur for the maximum 
value of E = 0.1 employed (figures 13 and 14). The poor correlation for case 1-3 
is attributed to the fact that magnetohydrodynamic interaction is not sufficient 
to overcome the potential flow effects created by the displacement thickness of 
the viscous layer. This conclusion is supported by the velocity profile shown in 
figure 10 for case 1-3. The lines where the current density outside the viscous 

30-2 
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-0.1 0 0 1  

- J and u- 1 

PICURE 10. Cwrent density and velocity profiles for cases 
1-1, 1-3 and 1-4; z = 357. 

0 Case 3-1 

A Case 3-2 

- ,I 

l l l l l l l l l l t l l l l l  
-0.1 0 +0.1 

- J and u- 1 

Note potential flow characteristics of velocity profile for case 3-2. 
FIGURE 11. Current density and velocity profiles for cases 3-1 and 3-2; z = 357. 
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layer becomes 80% of the maximum value, also plotted in figures 13 and 14, 
provide a measure of the width of the Alfvh region. It can easily be shown that 
the width of this region increases as Jx, and that the ratio of this width to the 
distance to the origin is of the order l/dc This region will subsequently be referred 
to as the Alfv6n line. 

Case X - Jmsv - JH 

1-3 83.9 0.084 0.050 
1-4 83.9 0.188 0.020 
3-2 83.9 0.200 0.020 
2-2 19 0.140 0.055 

TABLE 2.  Maximum magnitudes of concentration of current density. 

X 

FIGURE 12. Location of maximum positive current, case 1-3 : vertical lines at points are 
estimated uncertainty in location. Broken line on right indicates downstream boundary 
position. 

The longitudinal velocity profiles shown in figures 10 and 11 also exhibit the 
presence of the Alfvkn line; for, as e is increased, the velocity between the Alfvkn 
line and the plate decreases, with a corresponding increase in velocity between 
the Alfvdn line and the transverse boundary. The maximum magnitudes of this 
effect are summarized in table 3. The percentage changes are the changes in 
velocity from the corresponding Hartmann flow values referred to the free- 
stream velocity. It is seen that this effect does not become appreciable until the 
parameter 6 = and, in the cases investigated, the maximum effect is a 9.2 yo 
decrease (from the Hartmann flow values) in velocity near the plate and a 2.5 yo 
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I I I I I I I 
0 100 200 300 400 500 600 

X 

FIGURE 13. Location of maximum positive current, cases 1-4, 3-2: vertical lines at 
points for case 1-4 are estimated uncertainty in location of maxima. Downstream 
boundary position is at  far right. 

FIGURE 14. Location of maximum positive current, case 2-2 : vertical lines at points are 
estimated uncertainty in location of maxima. Downstream boundary is at  far right. 
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increase in velocity near the transverse boundary (case 3-2). The transverse 
velocity component, which is not shown, tends to increase upstream of the 
Alfvh line and decreases downstream of this line. Both of these effects are 
demonstrated by the change in location of the streamlines in cases 2-1 and 2-2, 
shown in figure 15. 

$= 10 / /  

Case X Decrease (yo) Increase (Yo) 
1-3 357 1.4 1.0 
1-4 357 8.4 3.9 
2-2 131 5.8 4.9 
3-2 357 9.2 2.5 
4-2 131 4.6 3.7 

TABLE 3. Maximum magnitudes of velocity changes from Hartmann flow values. 

/ p- -- - - --- 

I I I I I I I 

It is further noted that the potential flow effect indicated by the maxima in 
velocity profiles in case 1-1 (Hartmann flow) completely disappears in case 1-4 
(figure 10). However, in case 3-2 (figure ll),  which is identical with case 1-4 
with the exception of the position of the transverse boundary, the maxima 
reappear, indicating the potential flow effect, at a much greater distance from 
the plate (on the free stream side of the Alfdn line). 

The normal component of the magnetic intensity at  the plate is plotted in 
figures 16 and 17. It is seen that the changes in this component do not become 
appreciable until e = 10-2 and the maximum amount is in case 3-2, figure 16. 
The normal component at the transverse boundary, not shown, tends to decrease 
from the applied value; this effect is attributed to the presence of the transverse 
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boundary. It is also of interest to compare the change in the normal component 
of magnetic field at the plate with that predicted by the linearized solution 
(equation (3.15)). The comparison of the maximum change is reflected in table 4. 

X 

PICURE 16. Normal component of magnetic field a t  plate, cases 1-2, 1-3, 1-4, 3-2. 

u 
-100 

Case 4-2 

0 100 200 
300 

z 

FIGURE 17.  Normal component of magnetic field at plate, cases 2-2 and 4-2: 
downstream boundary for case 2-2 is located at  x = 300. 

Although the correlation is poor, the general character and order of magnitudes 
of the two results compare favourably. The rate of decay of this change is more 
rapid in the numerical results obtained than that predicted by the linearized 
solution. 
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The skin friction a t  the plate, tabulated in table 1, indicates that as the para- 
meter t: is increased, the skin friction tends to decrease very slightly. 

The preceding discussion can be summarized as follows: the presence of a 
non-conducting flat plate in an initially uniform, current-free flow of a conducting 
fluid in the presence of an applied transverse magnetic field, in addition to 
causing the formation of a thin viscous layer adjacent to the plate, excites an 
AlfvBn-type disturbance which propagates into the free stream. This disturbance 
is readily identified as a region of high current density. The line of course has a 
finite width, which increases as Jx by diffusive effects. In addition to being a 

(B, - l)/cf 
Y-- - - - -h__? 

1-2 0.150 0.87 
1-3 0.794 1.195 
2-2 0.920 0.995 

Case Numerical Equation (86) 

TABLE 4. Comparison of magnetic field distortion as 
obtained from numerical and linearized solution. 

region of high current density, the line tends to decrease the longitudinal com- 
ponent of velocity of the fluid as the fluid crosses it; the net result is the creation 
of a sizeable disturbance to the uniform flow. The position of the line is a strong 
function of the ratio of the Alfvbn speed to the free-stream velocity (the para- 
meter a), while the magnitude of the disturbance created is a strong function of 
the ratio of the two diffusivities (6 = g,uov) and does not appear to become 
appreciable until e > This disturbance resulting from the Alfv6n line is in 
marked contrast to the disturbance caused by a flat plate in the pure fluid 
mechanics case as it indicates that in flows of high electrical conductivity the 
effects of viscosity are no longer confined to a thin layer near the plate. 

5.3.  Interpretation of general character of numerical results 

The general character of the numerical results suggests a flow field of the type 
shown in figure 4, which was constructed by analogy with the Rayleigh problem 
(see 9 2.3); consequently, it  is of interest to interpret these results employing the 
basic properties of AlfvBn lines and viscous layers. In such an interpretation, it 
is helpful to recall the mathematical formulations governing the Rayleigh 
problem and the numerical problem differ in that ( 1 )  the former problem is 
linear, (2) the solutions to the Rayleigh problem exhibit damped wave character- 
istics in u and B, while the numerical problem exhibits damped wave character- 
istics in 5 and J ,  thus permitting potential flow-type solutions in u and B, 
(3) the relationship between the current density and field quantities is not 
analogous, and (4) the numerical problem contains effects due to finite boundary 
position. 

Adopting as a tentative model the flow shown in figure 4, it is possible to derive, 
by methods completely analogous to those rased for the Rayleigh problem in 
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8 2.2, some approximate relations determining the flow conditions between the 
Alfvdn line and the viscous layer. The approximation occurs due to the fact that 
the transverse velocities upstream and downstream of the Alfvdn line cannot 
both be matched to that required by the viscous layer. One possibility is to 
require v1 = B,, = 0;  the relations are then u2 = ( 1  + ,/e)-l, B,, = ,/e [a( 1 + 4e)]-1, 
v2 = - (ea2)* ( 1  + , / E ) - ~ ,  tan 8 = a, and B,, = (1  + 2 Je) (1  + ,/€)-I. It is evident 
that the results for u,, BX2, and tan8 are analogous to those obtained from the 
Rayleigh problem. However, the fact that v, does not vanish prevents this 
solution from being entirely satisfactory. An alternative possibility is to require 
v2 = B,, = 0. This yields u2 and B,, as before, and v1 = (ea2)*, tan 8 = a( 1 + ,/e), 
B,, = (1  + de)-l. Here again, the fact that v1 does not vanish makes this solution 
unsatisfactory. To reconcile either of these solutions with the problem at hand, 
it is necessary to admit potential solutions for the velocity field. In  a qualitative 
way, then, the complete solution will consist of a wave solution of the general 
type of either of the preceding ones, plus a potential solution in V and if necessary, 
B, in order that the boundary conditions may be satisfied. Further, it is not 
difficult to see that this potential flow must resemble the perturbation from 
uniform flow caused by a wedge of included half-angle /3 = tan-l (ea2)g. This 
potential flow effect is evident in the velocity profile shown in figure 11. This 
fact at once makes the existence of some ultimate state (as defined for the 
Rayleigh problem) extremely problematical and at  the same time permits 
amplification of the general conclusions regarding the nature of the flow. 

These amplifications are limited in scope to that region of the flow where the 
superposition of the wave solution and the potential solution is valid, that is, 
the Alfvdn line must be separated from the viscous layer, the parameter €a2 
must be small in order that the transverse component of velocity induced by the 
Alfvdn line is not large, and x must be limited such that the potential solution 
does not become dominant. With these restrictions, it may first be concluded 
that the slope of the Alfvdn line is not constant and is somewhat greater than a 
based on the free-stream conditions at  every point. This is evident from the fact 
that the wave solution must lie between the two presented previously. This 
conclusion is further supported bythe character of the Alfven line near the leading 
edge of the plate in the numerical results presented (figures 13 and 14), since the 
potential solution around the leading edge excited by viscous layer development 
is similar to the potential solution excited by the Alfvdn line. Secondly, it may be 
concluded that the change in the longitudinal component of velocity across the 
Alfvdn line is not as great as expected from the idealized wave solution due to 
the potential flow effect. These conclusions are certainly supported by the 
numerical results presented, although some consideration must be given to boun- 
dary effects, discussed in a subsequent paragraph, and the fact that cases 1-1 
through 1-4 and 3-1, 3-2 allow only marginal separation of the Alfvdn line and 
viscous layer. 

It is further noted that the fully developed viscous layers of the Rayleigh and 
numerical problems are fundamentally different. The skin friction in the latter 
case is given by (azc/ay), = = a ,/e u, B,,. From the wave-type solutions pre- 
sented previously, it can be deduced that either uzB,, = (1 + 2 4s)  (1 + , /E) - ,  or 



Magnetohydrodynamic $ow past a $at plate 47 5 

u2B,, = 1. Hence, it is expected that the skin friction change due to a change in 
t:, with €a2 fixed, is small for t: < 1; this conclusion is supported by the data 
presented in table 1. The skin friction in the Rayleigh problem, however, is 
proportional to I/( 1 + Je). The difference may be attributed to the lack of analogy 
between the current density-field relationships of the two problems. 

To complete the interpretation of the numerical results, some consideration 
must be given to the boundary effects. The effects of the upstream and down- 
stream boundaries appear to be merely constraining ones, a fact which can 
readily be deduced in the latter instance by comparing the results previously 
presented for cases 2-2 and 4-2. The transverse boundary effect, indicated by 
comparing the results of cases 1-4 and 3-2, is primarily one of channelling the 
flow. The consequences of this effect may be deduced from the fact that ifa trans- 
verse boundary is superimposed upon the elementary flow picture in figure 4, 
continuity considerations dictate that the velocity in front of the Alfvdn line 
must increase from the unchannelled value. This effect is of the same qualitative 
nature as the potential flow effect previously discussed, and hence it causes the 
velocity behind the Alfvdn line to be greater than the unchannelled value. As the 
significant parameter governing this effect is allh, it  is then expected that this 
effect is more pronounced for case 1-4 (al/h = 0.187) than for case 3-2 
(allh = 0.079); this conclusion is supported by the data in table 3. It is to be 
expected that this channelling effect tends to obscure the potential flow effect, 
a conclusion which is supported by comparison of figures 10 and 11. The increase 
in velocity due to channelling effects also tends to increase the current flow in 
the positive z-direction, which in turn tends to decrease the normal component 
of magnetic field. This effect is observed in the numerical results presented 
in figures 16-17 for the normal component at  the plate, and was also observed 
in the behaviour of the normal component at  the transverse boundary. Also, 
this effect undoubtedly plays an important part in the lack of correlation between 
the magnitudes of the distortion of magnetic field at the plate obtained numeric- 
ally and those obtained from the linearized solution (see table 4). For a t  low 
values of t: ( <  10-2), the magnetic field distortion is small, and the effect of 
channelling due to the viscous layer on this distortion is comparable in magnitude 
to the distortion. Hence good correlation at  these low values cannot be expected. 

5.4. Concluding remarks 
The most significant result of this work, apart from demonstrating feasibility 

of the numerical calculations, is the determination of the Alfvdn wave-viscous 
layer disturbance created by the plate in a transverse magnetic field. Thus, for 
t: not small, the viscous effects are not confined solely to a boundary layer, but 
an appreciable free-stream disturbance is produced. This limits small disturbance 
analyses of the type performed by Sears & Resler (1959) to the case of E -+ 0, as 
Stewartson (1960) has recently pointed out. When extended to the compressible 
case, this viscous layer-free stream interaction forecasts the formation of shock 
waves, which is an interesting experimental possibility if the necessary values 
of E ( N 1) can be achieved. 
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